In Situ Transmission Electron Microscopy Analysis of Copper–Germanium Nanowire Solid-State Reaction
Autor: | Khalil El hajraoui, Eric Robin, Clemens Zeiner, Alois Lugstein, Stéphanie Kodjikian, Jean-Luc Rouvière, Martien Den Hertog |
---|---|
Přispěvatelé: | Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Solid State Physics, Technical University of Vienna (TUW), Vienna University of Technology (TU Wien), Optique et microscopies (POM), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), ANR-12-JS10-0002,COSMOS,Correlation du microscopie électronique en transmission avec des mesures optique et électrique effectués sur le même nanofils unique(2012), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Technical University of Vienna [Vienna] (TU WIEN), Optique et microscopies (POM ), Laboratoire d'Etude des Matériaux par Microscopie Avancée (LEMMA), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, Rayonnements, Structure (NEEL - MRS), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Optique & Microscopies (NEEL - POM), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
010302 applied physics
[PHYS]Physics [physics] Mechanical Engineering In-situ Transmission Electron Microscopy Surface Diffusion Ge nanowires Bioengineering 02 engineering and technology General Chemistry [CHIM.INOR]Chemical Sciences/Inorganic chemistry 021001 nanoscience & nanotechnology Condensed Matter Physics 01 natural sciences Energy Dispersive X-ray Spectroscopy 0103 physical sciences General Materials Science [PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics 0210 nano-technology ComputingMilieux_MISCELLANEOUS Solid-state reaction |
Zdroj: | Nano Letters Nano Letters, American Chemical Society, 2019, 19 (12), pp.8365-8371. ⟨10.1021/acs.nanolett.9b01797⟩ Nano Letters, 2019, 19 (12), pp.8365-8371. ⟨10.1021/acs.nanolett.9b01797⟩ |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b01797⟩ |
Popis: | International audience; A promising approach of making high quality contacts on semiconductors is a silicidation (for silicon) or germanidation (for germanium) annealing process, where the metal enters the semiconductor and creates a low resistance intermetallic phase. In a nanowire, this process allows one to fabricate axial heterostructures with dimensions depending only on the control and understanding of the thermally induced solid-state reaction. In this work, we present the first observation of both germanium and copper diffusion in opposite directions during the solid-state reaction of Cu contacts on Ge nanowires using in situ Joule heating in a transmission electron microscope. The in situ observations allow us to follow the reaction in real time with nanometer spatial resolution. We follow the advancement of the reaction interface over time, which gives precious information on the kinetics of this reaction. We combine the kinetic study with ex situ characterization using model-based energy dispersive X-ray spectroscopy (EDX) indicating that both Ge and Cu diffuse at the surface of the created Cu3Ge segment and the reaction rate is limited by Ge surface diffusion at temperatures between 360 and 600 °C. During the reaction, germanide crystals typically protrude from the reacted NW part. However, their formation can be avoided using a shell around the initial Ge NW. Ha direct Joule heating experiments show slower reaction speeds indicating that the reaction can be initiated at lower temperatures. Moreover, they allow combining electrical measurements and heating in a single contacting scheme, rendering the Cu–Ge NW system promising for applications where very abrupt contacts and a perfectly controlled size of the semiconducting region is required. Clearly, in situ TEM is a powerful technique to better understand the reaction kinetics and mechanism of metal–semiconductor phase formation. |
Databáze: | OpenAIRE |
Externí odkaz: |