Fault Detection Method Using a Convolution Neural Network for Hybrid Active Neutral-Point Clamped Inverters
Autor: | Jung-Won Lee, Ye-Seul Park, Dong-Yeon Yoo, Sang-Hun Kim, Kyo-Beum Lee, Sang-Won An |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Open-switch fault detection
General Computer Science Computer science 020208 electrical & electronic engineering General Engineering deep learning 020302 automobile design & engineering 02 engineering and technology Fault (power engineering) Topology Convolutional neural network Fault detection and isolation Power (physics) convolution neural network 0203 mechanical engineering silicon carbide Distortion 0202 electrical engineering electronic engineering information engineering Inverter General Materials Science lcsh:Electrical engineering. Electronics. Nuclear engineering hybrid active neutral-point inverter lcsh:TK1-9971 Voltage |
Zdroj: | IEEE Access, Vol 8, Pp 140632-140642 (2020) |
ISSN: | 2169-3536 |
Popis: | This article presents an open-switch fault detection method for a hybrid active neutral-point clamped (HANPC) inverter based on deep learning technology. The HANPC inverter generates a three-level output voltage with four silicon switches and two silicon carbide switches per phase. The probability of open fault in switching devices increases because of the large number of switches of the entire power converter. The open-switch fault causes distortion of output currents. A convolution neural network (CNN) comprising several convolution layers and fully connected layers is used to extract features of distorted currents. A CNN network was trained using three-phase current information to determine the location of the open-switch fault. Our proposed CNN model can accurately detect approximately 99.6% of open-switch faults without requiring additional circuitry and regardless of the current level within an average time of 1.027ms. The feasibility and effectiveness of the proposed method are verified by experimental results. |
Databáze: | OpenAIRE |
Externí odkaz: |