Physicochemical parameters - hydration performance relationship of the new endodontic cement MTA Repair HP
Autor: | Juan-José Segura-Egea, Aránzazu Díaz-Cuenca, María del Carmen Jiménez-Sánchez |
---|---|
Rok vydání: | 2019 |
Předmět: |
Cement
Materials science Scanning electron microscope Research chemistry.chemical_element Nanoparticle 030206 dentistry 02 engineering and technology CIENCIAS MÉDICAS [UNESCO] 021001 nanoscience & nanotechnology Operative Dentistry and Endodontics 03 medical and health sciences 0302 clinical medicine chemistry Physisorption Chemical engineering Aluminium Specific surface area UNESCO::CIENCIAS MÉDICAS Fourier transform infrared spectroscopy 0210 nano-technology Field emission gun General Dentistry |
Zdroj: | Jiménez Sánchez, María del Carmen ; Segura-Egea, Juan J. ; Díaz Cuenca, María Aránzazu. Physicochemical parameters-hydration performance relationship of the new endodontic cement MTA Repair HP. En: Journal of Clinical and Experimental Dentistry, 11 8 2019: 739-744 RODERIC. Repositorio Institucional de la Universitat de Valéncia instname Journal of Clinical and Experimental Dentistry |
ISSN: | 1989-5488 |
DOI: | 10.4317/jced.56013 |
Popis: | Background To characterize the chemical composition and textural parameters of the MTA Repair HP precursor powder and their influence to hydration performance. Material and methods Un-hydrated precursor material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray fluorescence (XRF), laser diffraction (LD), N2 physisorption and field emission gun scanning electron microscopy (FEG-SEM). Setting time was assessed according to ASTM specification C 266. Hydrated material was analysed by XRD, FT-IR, energy dispersive X-ray (EDX) analysis and FEG-SEM. Results Ca3SiO5 and Ca2SiO4, in addition to CaWO4 as radiopacifier are the main compositional phases. Other measured parameter indicates high specific surface area of 4.8 m2 g-1, high aluminium content of 1.7 wt.% and low initial and final setting times of 12 and 199 min, respectively. Singular microstructural features consisting of high aspect ratio nanoparticles are main constituents of un-hydrated precursor. Besides, FEM-SEM observation shows notably growth of hexagonal shaped plate-like morphologies homogeneously distributed along the sample during hydration process. Conclusions The short setting time measured for HP Repair, is correlated with high surface area of precursor powder, high Al content and the absence of compositional sulphate phases. Key words:Bioactive endodontic cements, hydration performance, MTA HP Repair, physicochemical parameters. |
Databáze: | OpenAIRE |
Externí odkaz: |