A Fourier-based numerical homogenization tool for an explosive material
Autor: | François Willot, Bruno Figliuzzi, Hervé Trumel, Dominique Jeulin, Jean-Baptiste Gasnier, Maxime Biessy |
---|---|
Přispěvatelé: | Centre de Morphologie Mathématique (CMM), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), CEA Le Ripault (CEA Le Ripault), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), MINES ParisTech - École nationale supérieure des mines de Paris |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Materials science
Explosive material Nucleation 02 engineering and technology Mechanics 021001 nanoscience & nanotechnology Homogenization (chemistry) Thermal expansion [PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] Condensed Matter::Materials Science chemistry.chemical_compound Crystallography symbols.namesake 020303 mechanical engineering & transports Thermoelastic damping Fourier transform 0203 mechanical engineering chemistry TATB Representative elementary volume symbols [PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] General Materials Science 0210 nano-technology |
Zdroj: | Matériaux & Techniques Matériaux & Techniques, 2015, 103 (3), pp.308. ⟨10.1051/mattech/2015019⟩ Matériaux & Techniques, EDP Sciences, 2015, 103 (3), pp.308. ⟨10.1051/mattech/2015019⟩ |
ISSN: | 0032-6895 1778-3771 |
Popis: | Typo in Ref. 7 corrected, and acknowledgements added; International audience; This paper describes the development of a numerical homogenization tool adapted to TATB-based pressed explosives. This is done by combining virtual microstructure modeling and Fourier-based computations. The polycrystalline microstructure is represented by a Johnson-Mehl tessellation model with Poisson random nucleation and anisotropic growth of grains. Several calculations are performed with several sets of available data for the thermoelastic behavior of TATB. Good agreement is found between numerical predictions and experimental data regarding the overall thermal expansion coefficient. The results are shown to comply with available bounds on polycrystalline anisotropic thermoelasticity. Finally, the size of the representative volume element is derived for the bulk, shear and volumetric thermal expansion moduli. |
Databáze: | OpenAIRE |
Externí odkaz: |