Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila

Autor: Jean E. L. Arceneaux, S. Barghouthi, Shelley M Payne, B. R. Byers
Rok vydání: 1991
Předmět:
Zdroj: Journal of Bacteriology. 173:5121-5128
ISSN: 1098-5530
0021-9193
DOI: 10.1128/jb.173.16.5121-5128.1991
Popis: Many isolates of the Aeromonas species produce amonabactin, a phenolate siderophore containing 2,3-dihydroxybenzoic acid (2,3-DHB). An amonabactin biosynthetic gene (amoA) was identified (in a Sau3A1 gene library of Aeromonas hydrophila 495A2 chromosomal DNA) by its complementation of the requirement of Escherichia coli SAB11 for exogenous 2,3-DHB to support siderophore (enterobactin) synthesis. The gene amoA was subcloned as a SalI-HindIII 3.4-kb DNA fragment into pSUP202, and the complete nucleotide sequence of amoA was determined. A putative iron-regulatory sequence resembling the Fur repressor protein-binding site overlapped a possible promoter region. A translational reading frame, beginning with valine and encoding 396 amino acids, was open for 1,188 bp. The C-terminal portion of the deduced amino acid sequence showed 58% identity and 79% similarity with the E. coli EntC protein (isochorismate synthetase), the first enzyme in the E. coli 2,3-DHB biosynthetic pathway, suggesting that amoA probably encodes a step in 2,3-DHB biosynthesis and is the A. hydrophila equivalent of the E. coli entC gene. An isogenic amonabactin-negative mutant, A. hydrophila SB22, was isolated after marker exchange mutagenesis with Tn5-inactivated amoA (amoA::Tn5). The mutant excreted neither 2,3-DHB nor amonabactin, was more sensitive than the wild-type to growth inhibition by iron restriction, and used amonabactin to overcome iron starvation.
Databáze: OpenAIRE