Power spectrum of the circular unitary ensemble

Autor: Eugene Kanzieper, Roman Riser
Rok vydání: 2023
Předmět:
Zdroj: Physica D: Nonlinear Phenomena. 444:133599
ISSN: 0167-2789
DOI: 10.1016/j.physd.2022.133599
Popis: We study the power spectrum of eigen-angles of random matrices drawn from the circular unitary ensemble ${\rm CUE}(N)$ and show that it can be evaluated in terms of either a Fredholm determinant, or a Toeplitz determinant, or a sixth Painlev\'e function. In the limit of infinite-dimensional matrices, $N\rightarrow\infty$, we derive a ${\it\, concise\,}$ parameter-free formula for the power spectrum which involves a fifth Painlev\'e transcendent and interpret it in terms of the ${\rm Sine}_2$ determinantal random point field. Further, we discuss a universality of the predicted power spectrum law and tabulate it (follow http://eugenekanzieper.faculty.hit.ac.il/data.html) for easy use by random-matrix-theory and quantum chaos practitioners.
Comment: 47 pages; 4 figures; published version
Databáze: OpenAIRE