Contribution of the kinetics of G protein dissociation to the characteristic modifications of N-type calcium channel activity
Autor: | Michel De Waard, Norbert Weiss, Anne Feltz, Christophe Arnoult |
---|---|
Přispěvatelé: | Canaux calciques , fonctions et pathologies, Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire de Neurobiologie (UMR 8544) (NEURO), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Inserm, École normale supérieure - Paris (ENS-PSL) |
Rok vydání: | 2009 |
Předmět: |
Patch-Clamp Techniques
Xenopus Receptors Opioid mu MESH: Rabbits N-type calcium channel MESH: Analgesics Opioid MESH: Microinjections Membrane Potentials MESH: Dose-Response Relationship Drug MESH: GTP-Binding Protein beta Subunits Calcium Channels N-Type 0302 clinical medicine MESH: Animals MESH: Xenopus Membrane potential 0303 health sciences Voltage-dependent calcium channel Chemistry General Neuroscience GTP-Binding Protein beta Subunits MESH: Electric Stimulation General Medicine Analgesics Opioid Biochemistry [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Neurons and Cognition (q-bio.NC) Rabbits MESH: GTP-Binding Proteins Microinjections MESH: Rats G protein Models Neurological Kinetics chemistry.chemical_element MESH: Receptors Opioid mu MESH: Enkephalin Ala(2)-MePhe(4)-Gly(5) [SDV.BC]Life Sciences [q-bio]/Cellular Biology Calcium MESH: Oocytes 03 medical and health sciences GTP-Binding Proteins MESH: Models Neurological MESH: Calcium Channels N-Type MESH: Patch-Clamp Techniques MESH: Dose-Response Relationship Radiation Animals MESH: Membrane Potentials 030304 developmental biology G protein-coupled receptor Dose-Response Relationship Drug Calcium channel Dose-Response Relationship Radiation Enkephalin Ala(2)-MePhe(4)-Gly(5) Electric Stimulation Rats Quantitative Biology - Neurons and Cognition FOS: Biological sciences Oocytes Biophysics 030217 neurology & neurosurgery |
Zdroj: | Neuroscience Research Neuroscience Research, Elsevier, 2006, 56 (3), pp.332-43. ⟨10.1016/j.neures.2006.08.002⟩ Neuroscience Research, 2006, 56 (3), pp.332-43. ⟨10.1016/j.neures.2006.08.002⟩ |
ISSN: | 0168-0102 1872-8111 |
DOI: | 10.48550/arxiv.0911.1844 |
Popis: | Direct G protein inhibition of N-type calcium channels is recognized by characteristic biophysical modifications. In this study, we quantify and simulate the importance of G protein dissociation on the phenotype of G protein-regulated whole-cell currents. Based on the observation that the voltage-dependence of the time constant of recovery from G protein inhibition is correlated with the voltage-dependence of channel opening, we depict all G protein effects by a simple kinetic scheme. All landmark modifications in calcium currents, except inhibition, can be successfully described using three simple biophysical parameters (extent of block, extent of recovery, and time constant of recovery). Modifications of these parameters by auxiliary β subunits are at the origin of differences in N-type channel regulation by G proteins. The simulation data illustrate that channel reluctance can occur as the result of an experimental bias linked to the variable extent of G protein dissociation when peak currents are measured at various membrane potentials. To produce alterations in channel kinetics, the two most important parameters are the extents of initial block and recovery. These data emphasize the contribution of the degree and kinetics of G protein dissociation in the modification of N-type currents. |
Databáze: | OpenAIRE |
Externí odkaz: |