Noncommutative integrability of the Klein-Gordon and Dirac equations in (2+1)-dimensional spacetime
Autor: | A. V. Shapovalov, A. I. Breev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
010308 nuclear & particles physics Mathematics::Operator Algebras Дирака уравнение General Physics and Astronomy Dirac algebra Минковского пространство 01 natural sciences Noncommutative geometry symbols.namesake Dirac equation Mathematics::Quantum Algebra 0103 physical sciences Minkowski space symbols Noncommutative quantum field theory 010306 general physics Dirac sea Klein–Gordon equation Causal fermion system Mathematical physics Клейна-Гордона уравнение |
Zdroj: | Russian physics journal. 2017. Vol. 59, № 11. P. 1956-1961 |
Popis: | Noncommutative integration of the Klein–Gordon and Dirac relativistic wave equations in (2+1)-dimensional Minkowski space is considered. It is shown that for all non-Abelian subalgebras of the (2+1)-dimensional Poincaré algebra the condition of noncommutative integrability is satisfied. |
Databáze: | OpenAIRE |
Externí odkaz: |