Component-wise models for the accurate dynamic and buckling analysis of composite wing structures
Autor: | Gustavo H.C. Silva, Erasmo Carrera, Pedro H. Cabral, Alex P. Prado, Alfonso Pagani |
---|---|
Předmět: |
Engineering
Composite wing structures Buckling business.industry Lagrange polynomial Free vibration Structural engineering Displacement (vector) Finite element method symbols.namesake Carrera unified formulation Component-wise Displacement field Index notation symbols Applied mathematics Virtual work business Beam (structure) |
Zdroj: | Politecnico di Torino-IRIS |
Popis: | In the present work, a higher-order beam model able to characterize correctly the three-dimensional strain and stress fields with minimum computational efforts is proposed. One-dimensional models are formulated by employing the Carrera Unified Formulation (CUF), according to which the generic 3D displacement field is expressed as the expansion of the primary mechanical variables. In such a way, by employing a recursive index notation, the governing equations and the related finite element arrays of arbitrarily refined beam models can be written in a very compact and unified manner. A Component-Wise (CW) approach is developed in this work by using Lagrange polynomials as expanding cross-sectional functions. By using the principle of virtual work and CUF, free vibration and linearized buckling analyses of composite aerospace structures are investigated. The capabilities of the proposed methodology and the advantages over the classical methods and state-of-the-art tools are widely demonstrated by numerical results. |
Databáze: | OpenAIRE |
Externí odkaz: |