Cyclic extensions of finite simple groups

Autor: Stephen M. Gagola, Alexander N. Grishkov
Rok vydání: 2016
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1435-4446
1433-5883
DOI: 10.1515/jgth-2016-0039
Popis: Here cyclic extensions, not necessarily split, of simple groups are looked at. It is shown that if N is a finite simple group that is either an abelian group, an alternating group, a Suzuki group, a projective special linear group or a sporadic simple group and G = 〈 N , u 〉 ${G=\langle N,u\rangle}$ is a cyclic extension of N resulting in a Moufang loop, then 〈 N , u 2 〉 ${\langle N,u^{2}\rangle}$ is a group. Moreover, if G is nonassociative, then G is a generalization of the Chein loop where u inverts all of the elements of N.
Databáze: OpenAIRE