The Hawking–Penrose Singularity Theorem for C1-Lorentzian Metrics
Autor: | Michael Kunzinger, Argam Ohanyan, Benedict Schinnerl, Roland Steinbauer |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | We extend both the Hawking-Penrose Theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity $C^1$. For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for $C^1$-metrics [7]. For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and $C^{1,1}$-settings. In addition, we develop refinements of the comparison techniques used in the proof of the $C^{1,1}$-version of the theorem [8]. The necessary results from low regularity causality theory are collected in an appendix. Comment: 39 pages, final version |
Databáze: | OpenAIRE |
Externí odkaz: |