Splittings of Toric Ideals

Autor: Graham Keiper, Adam Van Tuyl, Giuseppe Favacchio, Johannes Hofscheier
Přispěvatelé: Favacchio G., Hofscheier J., Keiper G., Van Tuyl A.
Jazyk: angličtina
Rok vydání: 2019
Předmět:
ISSN: 0021-8693
Popis: Let $I \subseteq R = \mathbb{K}[x_1,\ldots,x_n]$ be a toric ideal, i.e., a binomial prime ideal. We investigate when the ideal $I$ can be "split" into the sum of two smaller toric ideals. For a general toric ideal $I$, we give a sufficient condition for this splitting in terms of the integer matrix that defines $I$. When $I = I_G$ is the toric ideal of a finite simple graph $G$, we give additional splittings of $I_G$ related to subgraphs of $G$. When there exists a splitting $I = I_1+I_2$ of the toric ideal, we show that in some cases we can describe the (multi-)graded Betti numbers of $I$ in terms of the (multi-)graded Betti numbers of $I_1$ and $I_2$.
20 pages, 9 figures; v2: error corrected, improved exposition; v3: revision based on comments from the referee
Databáze: OpenAIRE