Rapid prediction of multi-dimensional NMR data sets
Autor: | Gradmann, S.H.E., Ader, C., Heinrich, I., Nand, D., Dittmann, M., Cukkemane, A.A., van Dijk, M., Bonvin, A.M.J.J., Engelhard, M., Baldus, M., NMR Spectroscopy, Sub NMR Spectroscopy |
---|---|
Přispěvatelé: | NMR Spectroscopy, Sub NMR Spectroscopy, Molecular and Computational Toxicology, AIMMS |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Channel (digital image)
Data set Databases Factual In silico Analytical chemistry Cyclic Nucleotide-Gated Cation Channels Context (language use) Experimental data 010402 general chemistry 01 natural sciences Biochemistry Solid-state NMR Nuclear magnetic resonance 03 medical and health sciences Software Taverne Sensory Rhodopsins Nuclear Magnetic Resonance Biomolecular Spectroscopy Sensory rhodopsin II 030304 developmental biology 0303 health sciences Binding Sites Chemistry business.industry Chemical shift Protein Membrane Multi dimensional Computational environment NMR 0104 chemical sciences Solid-state nuclear magnetic resonance Content (measure theory) Biological system business Algorithms |
Zdroj: | NARCIS DANS (Data Archiving and Networked Services) ICT FP7 Publications Database UnpayWall ORCID Microsoft Academic Graph Journal of Biomolecular NMR, 54(4), 377-387. Springer Netherlands Journal of Biomolecular NMR, 54(4), 377 Journal of Biomolecular NMR Journal of Biomolecular NMR, 54(4), 377. Springer Netherlands Gradmann, S, Ader, C, Heinrich, I, Nand, D, Dittmann, M, Cukkemane, A, van Dijk, M, Bonvin, A M J J, Engelhard, M & Baldus, M 2012, ' Rapid prediction of multi-dimensional NMR data sets ', Journal of Biomolecular NMR, vol. 54, no. 4, pp. 377-387 . https://doi.org/10.1007/s10858-012-9681-y |
ISSN: | 0925-2738 |
DOI: | 10.1007/s10858-012-9681-y |
Popis: | We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such "in silico" data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR ( http://www.wenmr.eu/services/FANDAS ). |
Databáze: | OpenAIRE |
Externí odkaz: |