Simulations of ultra-high Energy Cosmic Rays in the local Universe and the origin of Cosmic Magnetic Fields

Autor: Jenny G. Sorce, Franco Vazza, Stephan Gottlober, Stefan Hackstein, Marcus Brüggen
Přispěvatelé: Observatoire astronomique de Strasbourg (ObAS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Hackstein, S, Vazza, F, Brüggen, M, Sorce, J G, Gottlöber, S, Observatoire astronomique de Strasbourg ( ObAS ), Université de Strasbourg ( UNISTRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Big Bang
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
MHD
media_common.quotation_subject
[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]
Astrophysics::High Energy Astrophysical Phenomena
Cosmic microwave background
FOS: Physical sciences
Cosmic ray
magnetic field
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
anisotropy
Astro-physics/chemistry/biology
solar system
stellar
galactic and extragalactic astronomy
planetary systems
cosmology
space science
instrumentation [PE9 - Universe Sciences]

7. Clean energy
01 natural sciences
law.invention
methods: numerical
Plasma cosmology
cosmic rays
law
0103 physical sciences
Ultra-high-energy cosmic ray
cosmic radiation: UHE
010303 astronomy & astrophysics
media_common
relativistic processes
Physics
Pierre Auger Observatory
High Energy Astrophysical Phenomena (astro-ph.HE)
energy: high
cosmic radiation: propagation
MHD - relativistic processes - methods: numerical - cosmic rays - ISM: magnetic fields
PAMELA detector
010308 nuclear & particles physics
Astrophysics::Instrumentation and Methods for Astrophysics
Astronomy and Astrophysics
Universe
boundary condition
Auger
hydrodynamics: magnetic
13. Climate action
Space and Planetary Science
statistics
ISM: magnetic fields
Astrophysics - High Energy Astrophysical Phenomena
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
dipole
Astrophysics - Cosmology and Nongalactic Astrophysics
Zdroj: Mon.Not.Roy.Astron.Soc.
Mon.Not.Roy.Astron.Soc., 2018, 475 (2), pp.2519-2529. ⟨10.1093/mnras/stx3354⟩
Hackstein, Stefan ; Vazza, Franco ; Bruggen, Marcus ; Sorce, Jenny ; Gottlober, Stephan (2018) Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields. Monthly Notices of the Royal Astronomical Society, 475 (2). ISSN 0035-8711
Mon.Not.Roy.Astron.Soc., 2018, 475 (2), pp.2519-2529. 〈10.1093/mnras/stx3354〉
Monthly Notices of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2018, 475 (2), pp.2519-2529. ⟨10.1093/mnras/stx3354⟩
ISSN: 0035-8711
1365-2966
DOI: 10.1093/mnras/stx3354⟩
Popis: We simulate the propagation of cosmic rays at ultra-high energies, $\gtrsim 10^{18}$ eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code {\sc ENZO}. The resulting models of the distribution of magnetic fields in the local Universe are used in the \crpropa code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the GZK-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured by the non-observation of anisotropy at energies of $4-8 \rm\ EeV$.
Comment: 12 pages, 9 figures
Databáze: OpenAIRE