Simulations of ultra-high Energy Cosmic Rays in the local Universe and the origin of Cosmic Magnetic Fields
Autor: | Jenny G. Sorce, Franco Vazza, Stephan Gottlober, Stefan Hackstein, Marcus Brüggen |
---|---|
Přispěvatelé: | Observatoire astronomique de Strasbourg (ObAS), Université de Strasbourg (UNISTRA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Hackstein, S, Vazza, F, Brüggen, M, Sorce, J G, Gottlöber, S, Observatoire astronomique de Strasbourg ( ObAS ), Université de Strasbourg ( UNISTRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Big Bang
Cosmology and Nongalactic Astrophysics (astro-ph.CO) MHD media_common.quotation_subject [ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] Astrophysics::High Energy Astrophysical Phenomena Cosmic microwave background FOS: Physical sciences Cosmic ray magnetic field Astrophysics Astrophysics::Cosmology and Extragalactic Astrophysics anisotropy Astro-physics/chemistry/biology solar system stellar galactic and extragalactic astronomy planetary systems cosmology space science instrumentation [PE9 - Universe Sciences] 7. Clean energy 01 natural sciences law.invention methods: numerical Plasma cosmology cosmic rays law 0103 physical sciences Ultra-high-energy cosmic ray cosmic radiation: UHE 010303 astronomy & astrophysics media_common relativistic processes Physics Pierre Auger Observatory High Energy Astrophysical Phenomena (astro-ph.HE) energy: high cosmic radiation: propagation MHD - relativistic processes - methods: numerical - cosmic rays - ISM: magnetic fields PAMELA detector 010308 nuclear & particles physics Astrophysics::Instrumentation and Methods for Astrophysics Astronomy and Astrophysics Universe boundary condition Auger hydrodynamics: magnetic 13. Climate action Space and Planetary Science statistics ISM: magnetic fields Astrophysics - High Energy Astrophysical Phenomena [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] dipole Astrophysics - Cosmology and Nongalactic Astrophysics |
Zdroj: | Mon.Not.Roy.Astron.Soc. Mon.Not.Roy.Astron.Soc., 2018, 475 (2), pp.2519-2529. ⟨10.1093/mnras/stx3354⟩ Hackstein, Stefan ; Vazza, Franco ; Bruggen, Marcus ; Sorce, Jenny ; Gottlober, Stephan (2018) Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields. Monthly Notices of the Royal Astronomical Society, 475 (2). ISSN 0035-8711 Mon.Not.Roy.Astron.Soc., 2018, 475 (2), pp.2519-2529. 〈10.1093/mnras/stx3354〉 Monthly Notices of the Royal Astronomical Society Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2018, 475 (2), pp.2519-2529. ⟨10.1093/mnras/stx3354⟩ |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stx3354⟩ |
Popis: | We simulate the propagation of cosmic rays at ultra-high energies, $\gtrsim 10^{18}$ eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code {\sc ENZO}. The resulting models of the distribution of magnetic fields in the local Universe are used in the \crpropa code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the GZK-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured by the non-observation of anisotropy at energies of $4-8 \rm\ EeV$. Comment: 12 pages, 9 figures |
Databáze: | OpenAIRE |
Externí odkaz: |