On the group of zero-cycles of holomorphic symplectic varieties
Autor: | Xiaolei Zhao, Alina Marian |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Algebra and Number Theory Chern class Group (mathematics) Holomorphic function Zero (complex analysis) Surface (topology) Moduli space K3 surface Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Mathematics::K-Theory and Homology FOS: Mathematics Geometry and Topology Algebraic Geometry (math.AG) Symplectic geometry Mathematics |
Zdroj: | Épijournal de Géométrie Algébrique. 4 |
ISSN: | 2491-6765 |
DOI: | 10.46298/epiga.2020.volume4.5506 |
Popis: | For a moduli space of Bridgeland-stable objects on a K3 surface, we show that the Chow class of a point is determined by the Chern class of the corresponding object on the surface. This establishes a conjecture of Junliang Shen, Qizheng Yin, and the second author. |
Databáze: | OpenAIRE |
Externí odkaz: |