The Visual Object Tracking VOT2014 Challenge Results
Autor: | Kristoffer Öfjäll, Zhen Lei, Fahad Shahbaz Khan, Karel Lebeda, Tomas Vojir, Ming-Ming Cheng, Jorge Batista, Georg Nebehay, Dominik Pangersic, Bohyung Han, Ales Leonardis, Jin-Woo Choi, Lei Qin, Seunghoon Hong, Yuankai Qi, Cherkeng Heng, Amir Saffari, Jiri Matas, Jijia Li, Gustav Häger, Weiyao Lin, Christophe Garcia, Stan Z. Li, Alfredo Petrosino, Martin Danelljan, Michael Felsberg, Kwang Moo Yi, Sam Hare, Mario Edoardo Maresca, Joost van de Weijer, Bo Li, Hyeonseob Nam, Aleksandar Dimitriev, Horst Bischof, Matej Kristan, Simon Hadfield, Vibhav Vineet, Philip H. S. Torr, Zhiheng Niu, Luka Cehovin, Jianke Zhu, Richard Bowden, Horst Possegger, Longyin Wen, Alan Lukezic, Stuart Golodetz, Thomas Mauthner, Gustavo Fernandez, Jin-Young Choi, Samantha Yueying Lim, Qingming Huang, João F. Henriques, Yang Li, Stefan Duffner, Roman Pflugfelder, Franci Oven, Shengcai Liao |
---|---|
Přispěvatelé: | Agapito, L, Bronstein, Mm, Rother, C, University of Ljubljana, Austrian Institute of Technology [Vienna] (AIT), Czech Technical University in Prague (CTU), Extraction de Caractéristiques et Identification (imagine), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Graz University of Technology [Graz] (TU Graz), Shanghai Jiao Tong University [Shanghai], Seoul National University [Seoul] (SNU), Universitat Autònoma de Barcelona (UAB), University of Surrey (UNIS), Computer Vision Laboratory [EPFL] (CVLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Chinese Academy of Sciences [Beijing] (CAS), University of Oxford [Oxford], Harbin Institute of Technology (HIT), Zhejiang University |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Short-term single-object trackers
Computer science business.industry Machine learning computer.software_genre Object (computer science) Tracking (particle physics) Datorseende och robotik (autonoma system) Video tracking VOT Performance evaluation Benchmark (computing) [INFO]Computer Science [cs] Computer vision Artificial intelligence business computer Computer Vision and Robotics (Autonomous Systems) |
Zdroj: | Computer Vision-ECCV 2014 Workshops ISBN: 9783319161808 ECCV Workshops (2) Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV Workshop on Visual Object Tracking Challenge (VOT2014)-ECCV, Sep 2014, Zurich, Switzerland. pp.1-27 |
Popis: | The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http://votchallenge.net). |
Databáze: | OpenAIRE |
Externí odkaz: |