Wnt and BMP signaling pathways co‐operatively induce the differentiation of multiple myeloma mesenchymal stem cells into osteoblasts by upregulating EMX2
Autor: | Qi-Ke Zhang, Xiao-Fang Wei, Qiao-Lin Chen, Yuan Fu |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Cell EMX2 Bone morphogenetic protein Biochemistry 03 medical and health sciences 0302 clinical medicine Osteogenesis medicine Humans Molecular Biology Homeodomain Proteins Osteoblasts biology Chemistry Mesenchymal stem cell Wnt signaling pathway Cell Differentiation Mesenchymal Stem Cells Osteoblast Cell Biology Cell biology Wnt Proteins 030104 developmental biology medicine.anatomical_structure Gene Expression Regulation Case-Control Studies 030220 oncology & carcinogenesis Bone Morphogenetic Proteins Osteocalcin biology.protein Alkaline phosphatase Multiple Myeloma Signal Transduction Transcription Factors |
Zdroj: | Journal of Cellular Biochemistry. 120:6515-6527 |
ISSN: | 1097-4644 0730-2312 |
Popis: | Osteoblast differentiation, defined as the process whereby a relatively unspecialized cell acquires the specialized features of an osteoblast, is directly linked to multiple myeloma (MM) bone disease. Wnt and bone morphogenetic protein (BMP) are proved to be implicated in the pathological or defective osteoblast differentiation process. This study aims to test the involvement of Wnt, bone morphogenetic proteins (BMP) pathways, and empty spiracles homeobox 2 (EMX2) in osteoblast differentiation and MM development. Initially, differentially expressed genes in bone marrow mesenchymal stem cells (MSCs) from MM patients and healthy donors were identified using microarray-based gene expression profiling. The functional role of Wnt and BMP in MM was determined. Next, we focused on the co-operative effects of Wnt and BMP on calcium deposition, alkaline phosphatase (ALP) activity, the number of mineralized nodules, and osteocalcin (OCN) content in MSCs. The expression patterns of Wnt and BMP pathway-related genes, EMX2 and osteoblast differentiation-related factors were determined to assess their effects on osteoblast differentiation. Furthermore, regulation of Wnt and BMP in ectopic osteogenesis was also investigated in vivo. An integrated genomic screen suggested that Wnt and BMP regularly co-operate to regulate EMX2 and affect MM. EMX2 was downregulated in MSCs. The activated Wnt and BMP resulted in more calcium salt deposits, mineralized nodules, and a noted increased in ALP activity and OCN content by upregulating EMX2, leading to induced differentiation of MSCs into osteoblasts. Collectively, this study demonstrated that Wnt and BMP pathways could co-operatively stimulate differentiation of MSCs into osteoblasts and inhibit MM progression, representing potential targets for MM treatment. |
Databáze: | OpenAIRE |
Externí odkaz: |