Still No Free Lunches: The Price to Pay for Tighter PAC-Bayes Bounds

Autor: Louis Pujol, Benjamin Guedj
Přispěvatelé: University College of London [London] (UCL), Computer science department [University College London] (UCL-CS), Inria-CWI (Inria-CWI), Centrum Wiskunde & Informatica (CWI)-Institut National de Recherche en Informatique et en Automatique (Inria), MOdel for Data Analysis and Learning (MODAL), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies, The Inria London Programme (Inria-London), University College of London [London] (UCL)-University College of London [London] (UCL)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris-Saclay, Department of Computer science [University College of London] (UCL-CS), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), ANR-18-CE23-0015,APRIORI,Une Perspective PAC-Bayésienne de l'Apprentissage de Représentations(2018), ANR-18-CE40-0016,BEAGLE,Apprentissage PAC-bayésien agnostique(2018)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
FOS: Computer and information sciences
Computer Science - Machine Learning
no free lunch theorems
Science
QC1-999
Yield (finance)
Robust statistics
Probably approximately correct learning
General Physics and Astronomy
PAC-Bayes theory
Machine Learning (stat.ML)
Mathematics - Statistics Theory
Statistics Theory (math.ST)
02 engineering and technology
Astrophysics
01 natural sciences
Article
Machine Learning (cs.LG)
010104 statistics & probability
Bayes' theorem
statistical learning theory
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
Statistics - Machine Learning
020204 information systems
FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

No free lunch in search and optimization
Applied mathematics
0101 mathematics
Impossibility
Mathematics
Physics
State (functional analysis)
[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]
QB460-466
Statistical learning theory
Zdroj: Entropy
Volume 23
Issue 11
Entropy, MDPI, 2021, ⟨10.3390/e23111529⟩
Entropy, Vol 23, Iss 1529, p 1529 (2021)
Entropy, 2021, ⟨10.3390/e23111529⟩
ISSN: 1099-4300
DOI: 10.3390/e23111529
Popis: “No free lunch” results state the impossibility of obtaining meaningful bounds on the error of a learning algorithm without prior assumptions and modelling, which is more or less realistic for a given problem. Some models are “expensive” (strong assumptions, such as sub-Gaussian tails), others are “cheap” (simply finite variance). As it is well known, the more you pay, the more you get: in other words, the most expensive models yield the more interesting bounds. Recent advances in robust statistics have investigated procedures to obtain tight bounds while keeping the cost of assumptions minimal. The present paper explores and exhibits what the limits are for obtaining tight probably approximately correct (PAC)-Bayes bounds in a robust setting for cheap models.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje