Analytical comparison between the surface current integral equation and the second-order small-slope approximation

Autor: Donald R. Thompson, Maminirina Joelson, Tanos Elfouhaily, Stephan Guignard
Přispěvatelé: Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Hannoun, Judith
Rok vydání: 2003
Předmět:
Zdroj: Waves in Random Media
Waves in Random Media, Informa UK (Taylor & Francis);Institute of Physics (IOP), 2003, 13, n° 3, pp.165-176
Waves in Random Media, 2003, 13, n° 3, pp.165-176
ISSN: 1361-6676
0959-7174
DOI: 10.1088/0959-7174/13/3/302
Popis: This paper is the third in a series discussing a new approximate bistatic model for electromagnetic scattering from perfectly conducting rough surfaces. Our previous approach supplemented the Kirchhoff model through the addition of new terms involving linear orders in slope and surface elevation differences that arise naturally from a second iteration of the surface current integral equation. This completion of the Kirchhoff was shown to provide the correct first-order small perturbation method (SPM-1) in the general bistatic context. The agreement with SPM-1 was achieved because differences of surface heights are no longer expanded in powers of surface slope. While consistent with SPM, our previous formulation fails to reconverge toward the Kirchhoff model, at some incidence and scattered angles, when the illuminated surface satisfies the high frequency roughness condition. This weakness is also shared with the first-order small slope approximation (SSA-1) which is structurally equivalent to our...
Databáze: OpenAIRE