Reducibility in Sasakian Geometry

Autor: Charles P. Boyer, Christina W. Tønnesen-Friedman, Eveline Legendre, Hongnian Huang
Přispěvatelé: Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Trans.Am.Math.Soc.
Trans.Am.Math.Soc., 2018, 370 (10), pp.6825-6869. ⟨10.1090/tran/7526⟩
DOI: 10.1090/tran/7526⟩
Popis: The purpose of this paper is to study reducibility properties in Sasakian geometry. First we give the Sasaki version of the de Rham Decomposition Theorem; however, we need a mild technical assumption on the Sasaki automorphism group which includes the toric case. Next we introduce the concept of {\it cone reducible} and consider $S^3$ bundles over a smooth projective algebraic variety where we give a classification result concerning contact structures admitting the action of a 2-torus of Reeb type. In particular, we can classify all such Sasakian structures up to contact isotopy on $S^3$ bundles over a Riemann surface of genus greater than zero. Finally, we show that in the toric case an extremal Sasaki metric on a Sasaki join always splits.
Comment: 58 pages, minor corrections made in latest version; a reference added and references updated; to appear in the Transactions of the American Mathematical Society
Databáze: OpenAIRE