The Gorenstein Property for Projective Coordinate Rings of the Moduli of Parabolic $\mathrm{SL}_2$-Principal Bundles on a Smooth Curve
Autor: | Christopher Manon, Theodore Faust |
---|---|
Rok vydání: | 2019 |
Předmět: |
Projective curve
Property (philosophy) Mathematics::Commutative Algebra Applied Mathematics Principal (computer security) Theoretical Computer Science Moduli Combinatorics Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Computational Theory and Mathematics Genus (mathematics) FOS: Mathematics Discrete Mathematics and Combinatorics Geometry and Topology Projective test Affine variety Algebraic Geometry (math.AG) 14D20 05E10 Mathematics |
Zdroj: | The Electronic Journal of Combinatorics. 26 |
ISSN: | 1077-8926 |
DOI: | 10.37236/6438 |
Popis: | Using combinatorial methods, we determine that a projective coordinate ring of the moduli of parabolic principal $\mathrm{SL}_2$-bundles on a marked projective curve is not Gorenstein when the genus and number of marked points are greater than $1$. 12 pages, 6 figures, fixed an error in the main theorem, to appear in Electronic Journal of Combinatorics |
Databáze: | OpenAIRE |
Externí odkaz: |