Unsupervised Categorization of Heterogeneous Text Images Based on Fractals

Autor: R. Mullot, M.A. Alimi, B. Khelifi, Nizar Zaghden
Přispěvatelé: REsearch Group in Intelligent Machines [Sfax] (REGIM-Lab), École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS), Laboratoire Informatique, Image et Interaction - EA 2118 (L3I), Université de La Rochelle (ULR), L3I, IAPR, Zaghden, Nizar
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: international conference on pattern recognition
International conference on Pattern Recognition
International conference on Pattern Recognition, Dec 2008, Tampa, United States. pp.1-4,INSPEC Accession Number: 10444373
ICPR
Popis: 04; International audience; This paper deals about text extraction from heterogeneous documents for categorizing documents and indexing tasks. The purpose of this work is to find similar text regions basing on their fonts. First text regions are extracted, and then font matching is performed using fractal descriptors. Experiments are done for both maps and ancient documents.
Databáze: OpenAIRE