Generating all 3-connected 4-regular planar graphs from the octahedron graph
Autor: | Broersma, Haitze J., Duijvestijn, A.J.W., Gobel, F. |
---|---|
Přispěvatelé: | Discrete Mathematics and Mathematical Programming |
Rok vydání: | 1993 |
Předmět: |
Discrete mathematics
Book embedding Symmetric graph IR-70999 Computer Science::Computational Geometry 1-planar graph Planar graph Combinatorics symbols.namesake Pathwidth Chordal graph Outerplanar graph symbols METIS-140354 Mathematics::Metric Geometry Discrete Mathematics and Combinatorics Geometry and Topology Pancyclic graph Mathematics |
Zdroj: | Journal of graph theory, 17(5), 613-620. Wiley-Liss Inc. |
ISSN: | 1097-0118 0364-9024 |
DOI: | 10.1002/jgt.3190170508 |
Popis: | We prove that all 3-connected 4-regular planar graphs can be generated from the Octahedron Graph, using three operations. We generated these graphs up to 15 vertices inclusive. Moreover, by including a fourth operation we obtain an alternative to a procedure by Lehel to generate all connected 4-regular planar graphs from the Octahedron Graph. |
Databáze: | OpenAIRE |
Externí odkaz: |