Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material
Autor: | Roger W. Whatmore, Valeria Nicolosi, Martyn E. Pemble, Michael Schmidt, Clive Downing, Lynette Keeney |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Ferroelectrics
Morphology STABILIZATION Materials science Aurivillius phase Thin films Science SITE PERCOLATION THRESHOLDS AURIVILLIUS-PHASE 02 engineering and technology 01 natural sciences Article Aurivillius Magnetization THIN-FILMS COMPLEX NEIGHBORHOODS LATTICE SITE Phase (matter) 0103 physical sciences Scanning transmission electron microscopy OXIDES Thin film 010306 general physics Site percolation thresholds Perovskite (structure) FERROELECTRICS Science & Technology Multidisciplinary biology Complex neighborhoods BI5FETI3O15 Oxides Bi5FeTI3O15 021001 nanoscience & nanotechnology biology.organism_classification Lattice site Stabilization Multidisciplinary Sciences Ferromagnetism Chemical physics Science & Technology - Other Topics MORPHOLOGY Medicine Atomic number 0210 nano-technology |
Zdroj: | Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017) Scientific Reports |
ISSN: | 2045-2322 |
Popis: | The five-layer Aurivillius phase Bi6TixFeyMnzO18 system is a rare example of a single-phase room temperature multiferroic material. To optimise its properties and exploit it for future memory storage applications, it is necessary to understand the origin of the room temperature magnetisation. In this work we use high resolution scanning transmission electron microscopy, EDX and EELS to discover how closely-packed Ti/Mn/Fe cations of similar atomic number are arranged, both within the perfect structure and within defect regions. Direct evidence for partitioning of the magnetic cations (Mn and Fe) to the central three of the five perovskite (PK) layers is presented, which reveals a marked preference for Mn to partition to the central layer. We infer this is most probably due to elastic strain energy considerations. The observed increase (>8%) in magnetic cation content at the central PK layers engenders up to a 90% increase in potential ferromagnetic spin alignments in the central layer and this could be significant in terms of creating pathways to the long-range room temperature magnetic order observed in this distinct and intriguing material system. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |