New insights into spectral histopathology: infrared-based scoring of tumour aggressiveness of squamous cell lung carcinomas

Autor: Olivier Piot, Jean-François Angiboust, Claire Kileztky, Cyril Gobinet, Myriam Polette, Philippe Birembaut, Vincent Gaydou, Vincent Vuiblet
Přispěvatelé: PERRON, Brigitte, Biospectroscopie Translationnelle - EA 7506 (BIOSPECT), Université de Reims Champagne-Ardenne (URCA), Dynamique cellulaire et moléculaire de la muqueuse respiratoire, Université de Reims Champagne-Ardenne (URCA)-IFR53-Institut National de la Santé et de la Recherche Médicale (INSERM), Plasticité de l'épithélium respiratoire dans les conditions normales et pathologiques - UMR-S 903 (PERPMP), Université de Reims Champagne-Ardenne (URCA)-Centre Hospitalier Universitaire de Reims (CHU Reims)-Institut National de la Santé et de la Recherche Médicale (INSERM)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV), Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims (CHU Reims)
Rok vydání: 2019
Předmět:
medicine.medical_specialty
Pathology
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic
[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
Cell
[SDV.BBM.BP] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biophysics

[SDV.CAN]Life Sciences [q-bio]/Cancer
[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]
[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]
010402 general chemistry
01 natural sciences
Patient care
[SDV.CAN] Life Sciences [q-bio]/Cancer
[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]
[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]
medicine
ComputingMilieux_MISCELLANEOUS
[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Lung
[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]
010405 organic chemistry
business.industry
Cancer
General Chemistry
Numerical models
medicine.disease
3. Good health
0104 chemical sciences
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Biophysics

medicine.anatomical_structure
Tissue sections
Cancer cell
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic
Histopathology
business
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: Chemical Science
Chemical Science, 2019, 10 (15), pp.4246-4258. ⟨10.1039/c8sc04320e⟩
Chemical Science, The Royal Society of Chemistry, 2019, 10 (15), pp.4246-4258. ⟨10.1039/c8sc04320e⟩
ISSN: 2041-6539
2041-6520
DOI: 10.1039/c8sc04320e
Popis: International audience; Spectral histopathology, based on infrared interrogation of tissue sections, proved a promising tool for helping pathologists in characterizing histological structures in a quantitative and automatic manner. In cancer diagnosis, the use of chemometric methods permits establishing numerical models able to detect cancer cells and to characterize their tissular environment. In this study, we focused on exploiting multivariate infrared data to score the tumour aggressiveness in preneoplastic lesions and squamous cell lung carcinomas. These lesions present a wide range of aggressive phenotypes; it is also possible to encounter cases with various degrees of aggressiveness within the same lesion. Implementing an infrared-based approach for a more precise histological determination of the tumour aggressiveness should arouse interest among pathologists with direct benefits for patient care. In this study, the methodology was developed from a set of samples including all degrees of tumour aggressiveness and by constructing a chain of data processing steps for an automated analysis of tissues currently manipulated in routine histopathology.
Databáze: OpenAIRE