Autor: |
Daniel Guillermo García-Murillo, Andrés Marino Álvarez-Meza, Cesar German Castellanos-Dominguez |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Diagnostics; Volume 13; Issue 6; Pages: 1122 |
ISSN: |
2075-4418 |
DOI: |
10.3390/diagnostics13061122 |
Popis: |
This paper uses EEG data to introduce an approach for classifying right and left-hand classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination. In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to model channel functional relationships. As a result, the functional connectivity feature map reduces the number of parameters, improving interpretability by extracting meaningful patterns related to MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI classification with the potential for real-world use in brain–computer interface systems. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|