Bottom of spectra and amenability of coverings
Autor: | Henrik Matthiesen, Panagiotis Polymerakis, Werner Ballmann |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Geometric Analysis Progress in Mathematics Geometric Analysis ISBN: 9783030349523 |
Popis: | For a Riemannian covering $\pi\colon M_1\to M_0$, the bottoms of the spectra of $M_0$ and $M_1$ coincide if the covering is amenable. The converse implication does not always hold. Assuming completeness and a lower bound on the Ricci curvature, we obtain a converse under a natural condition on the spectrum of $M_0$. |
Databáze: | OpenAIRE |
Externí odkaz: |