Bottom of spectra and amenability of coverings

Autor: Henrik Matthiesen, Panagiotis Polymerakis, Werner Ballmann
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Geometric Analysis
Progress in Mathematics
Geometric Analysis ISBN: 9783030349523
Popis: For a Riemannian covering $\pi\colon M_1\to M_0$, the bottoms of the spectra of $M_0$ and $M_1$ coincide if the covering is amenable. The converse implication does not always hold. Assuming completeness and a lower bound on the Ricci curvature, we obtain a converse under a natural condition on the spectrum of $M_0$.
Databáze: OpenAIRE