Homotopy transfer and rational models for mapping spaces

Autor: Urtzi Buijs, Javier J. Gutiérrez
Rok vydání: 2016
Předmět:
Zdroj: Journal of Homotopy and Related Structures, 11, 2, pp. 309-332
Journal of Homotopy and Related Structures, 11, 309-332
ISSN: 2193-8407
DOI: 10.1007/s40062-015-0107-x
Popis: By using homotopy transfer techniques in the context of rational homotopy theory, we show that if $C$ is a coalgebra model of a space $X$, then the $A_\infty$-coalgebra structure in $H_*(X;\mathbb{Q})\cong H_*(C)$ induced by the higher Massey coproducts provides the construction of the Quillen minimal model of $X$. We also describe an explicit $L_\infty$-structure on the complex of linear maps ${\rm Hom}(H_*(X; \mathbb{Q}), \pi_*(\Omega Y)\otimes\mathbb{Q})$, where $X$ is a finite nilpotent CW-complex and $Y$ is a nilpotent CW-complex of finite type, modeling the rational homotopy type of the mapping space ${\rm map}(X, Y)$. As an application we give conditions on the source and target in order to detect rational $H$-space structures on the components.
Comment: 21 pages. Final version. To appear in J. Homotopy Relat. Struct
Databáze: OpenAIRE