Comparative Analysis of Optoelectronic Accuracy in the Laboratory Setting Versus Clinical Operative Environment: A Systematic Review
Autor: | Bryan W. Cunningham, Daina M. Brooks |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Global Spine Journal. 12:59S-74S |
ISSN: | 2192-5690 2192-5682 |
DOI: | 10.1177/21925682211035083 |
Popis: | Study Design: Systematic review. Objectives: The optoelectronic camera source and data interpolation process serve as the foundation for navigational integrity in robotic-assisted surgical platforms. The current systematic review serves to provide a basis for the numerical disparity observed when comparing the intrinsic accuracy of optoelectronic cameras versus accuracy in the laboratory setting and clinical operative environments. Methods: Review of the PubMed and Cochrane Library research databases was performed. The exhaustive literature compilation obtained was then vetted to reduce redundancies and categorized into topics of intrinsic accuracy, registration accuracy, musculoskeletal kinematic platforms, and clinical operative platforms. Results: A total of 465 references were vetted and 137 comprise the basis for the current analysis. Regardless of application, the common denominators affecting overall optoelectronic accuracy are intrinsic accuracy, registration accuracy, and application accuracy. Intrinsic accuracy equaled or was less than 0.1 mm translation and 0.1 degrees rotation per fiducial. Controlled laboratory platforms reported 0.1 to 0.5 mm translation and 0.1 to 1.0 degrees rotation per array. Accuracy in robotic-assisted spinal surgery reported 1.5 to 6.0 mm translation and 1.5 to 5.0 degrees rotation when comparing planned to final implant position. Conclusions: Navigational integrity and maintenance of fidelity of optoelectronic data is the cornerstone of robotic-assisted spinal surgery. Transitioning from controlled laboratory to clinical operative environments requires an increased number of steps in the optoelectronic kinematic chain and error potential. Diligence in planning, fiducial positioning, system registration and intra-operative workflow have the potential to improve accuracy and decrease disparity between planned and final implant position. |
Databáze: | OpenAIRE |
Externí odkaz: |