The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view

Autor: Thomas Gallouët, François-Xavier Vialard
Přispěvatelé: Centre de Mathématiques Laurent Schwartz (CMLS), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Département de Mathématiques [Liège], Université de Liège, Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris sciences et lettres (PSL), ANR-16-CE40-0014,MAGA,Monge-Ampère et Géométrie Algorithmique(2016), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Journal of Differential Equations
Journal of Differential Equations, 2018, 264 (7), ⟨10.1016/j.jde.2017.12.008⟩
Journal of Differential Equations, Elsevier, 2018, 264 (7), ⟨10.1016/j.jde.2017.12.008⟩
ISSN: 0022-0396
1090-2732
Popis: The group of diffeomorphisms of a compact manifold endowed with the L^2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L^2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. On the optimal transport side, we prove a polar factorization theorem on the automorphism group of half-densities.Geometrically, our point of view provides an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L^2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give particular solutions of the incompressible Euler equation on a group of homeomorphisms of R^2 which preserve a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.
Comment: To appear in Journal of Differential Equations, 26 pages
Databáze: OpenAIRE