Some remarks on the regular splitting of quasi-polynomials with two delays. Characterization of double roots in degenerate cases

Autor: Silviu-Iulian Niculescu, Alejandro Martínez-González, César-Fernando Méndez-Barrios
Přispěvatelé: Aalto University, Facultad de Ingeniería (UASLP), Universidad Autonoma de San Luis Potosi [México] (UASLP), Dynamical Interconnected Systems in COmplex Environments (DISCO), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), session invitée organisée par Islam BOUSSAADA, Rifat SIPAHI
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: IFAC 2020-21st IFAC World Congress
IFAC 2020-21st IFAC World Congress, session invitée organisée par Islam BOUSSAADA, Rifat SIPAHI, Jul 2020, Berlin / Virtual, Germany. ⟨10.1016/j.ifacol.2020.12.363⟩
DOI: 10.1016/j.ifacol.2020.12.363⟩
Popis: International audience; This paper addresses the classification of multiple critical roots of dynamical continuous linear time-invariant systems including two constant delays in their mathematical representation. By considering the associated Weierstrass polynomial and its algebraic properties, we investigate the splitting behavior of such critical roots when the delays are subject to small variations. Some degenerate cases are also considered. The effectiveness of the proposed approach is illustrated through several numerical examples.
Databáze: OpenAIRE