D-stable controller design for Lipschitz NLPV system
Autor: | Ruicong Yang, Vicenҫ Puig, Damiano Rotondo |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió, Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control |
Rok vydání: | 2019 |
Předmět: |
0209 industrial biotechnology
Controller design Informàtica::Automàtica i control [Àrees temàtiques de la UPC] Quadratic lyapunov function Computer science Lipschitz nonlinear systems MathematicsofComputing_NUMERICALANALYSIS 02 engineering and technology Control Teoria de Matrius (Matemàtica) D-stabilitygain-scheduling Pole placement 020901 industrial engineering & automation Matrices Control theory Computer Science::Systems and Control Full state feedback 0202 electrical engineering electronic engineering information engineering D-stability 020208 electrical & electronic engineering Lipschitz continuity Nonlinear parameter varying (NLPV) systems Term (time) Nonlinear system Linear matrix inequalities (LMIs) Gain scheduling Control and Systems Engineering Gain-scheduling |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya |
Popis: | Trabajo presentado en el 3rd IFAC Workshop on Linear Parameter Varying Systems LPVS, celebrado en Eindhoven (Países Bajos), del 4 al 6 de noviembre de 2019 This paper addresses the design of a state-feedback controller for a class of nonlinear parameter varying (NLPV) systems in which the nonlinearity can be expressed as a parameter-varying Lipschitz term. The controller is designed to satisfy a D-stability specification, which is akin to imposing constraints on the closed-loop pole location in the case of LTI and LPV systems. The design conditions, obtained using a quadratic Lyapunov function, are eventually expressed in terms of linear matrix inequalities (LMIs), which can be solved efficiently using available solvers. The effectiveness of the proposed method is demonstrated by means of a numerical example. |
Databáze: | OpenAIRE |
Externí odkaz: |