$\mathfrak{X}$-elements in multiplicative lattices - A generalization of $J$-ideals, $n$-ideals and $r$-ideals in rings

Autor: Sachin SARODE, Vinayak JOSHİ
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Volume: 32, Issue: 32 46-61
International Electronic Journal of Algebra
ISSN: 1306-6048
Popis: In this paper, we introduce the concept of an $\mathfrak{X}$-element with respect to an $M$-closed set $\mathfrak{X}$ in multiplicative lattices and study properties of $\mathfrak{X}$-elements. For a particular $M$-closed subset $\mathfrak{X}$, we define the concepts of $r$-elements, $n$-elements and $J$-elements. These elements generalize the notion of $r$-ideals, $n$-ideals and $J$-ideals of a commutative ring with identity to multiplicative lattices. In fact, we prove that an ideal $I$ of a commutative ring $R$ with identity is a $n$-ideal ($J$-ideal) of $R$ if and only if it is an $n$-element ($J$-element) of $Id(R)$, the ideal lattice of $R$.
Databáze: OpenAIRE