Terminal Titanium-Ligand Multiple Bonds. Cleavages of CO and CS Double Bonds with Ti Imido Complexes

Autor: Chun Liang Lai, Shih Hsien Hsu, Jr Chiuan Chang, Gene-Hsiang Lee, Jui-Hsien Huang, Shie-Ming Peng, Hon Man Lee, Ching-Han Hu
Rok vydání: 2004
Předmět:
Zdroj: Inorganic Chemistry. 43:6786-6792
ISSN: 1520-510X
0020-1669
DOI: 10.1021/ic049474f
Popis: Treatment of (t-)BuN=TiCl(2)Py(3) with 2 equiv lithium ketiminate compound, Li[OCMeCHCMeN(Ar)] (where Ar = 2,6-diisopropylphenyl), in toluene at room temperature gave (t-)BuN=Ti[OCMeCHCMeN(Ar)](2) (1) in high yield. The reaction of 1 with phenyl isocyanate at room-temperature resulted in imido ligand exchange producing PhN=Ti[OCMeCHCMeN(Ar)](2) (2). Compound 1 decomposed at 90 degrees C to form a terminal titanium oxo compound O=Ti[OCMeCHCMeN(Ar)](2) (3) and (t-)BuNHCMeCHCMeNAr (4). Also, the compound 3 could be obtained by reacting 1 with CO(2) under mild condition. Similarly, while 1 reacts with an excess of carbon disulfide, a novel terminal titanium sulfido compound S=Ti[OCMeCHCMeN(Ar)](2) (5) was formed via a C=S bond breaking reaction. A novel titanium isocyanate compound Ti[OCMeCHCMeN(Ar)](2)(NCO)(OEt) (6) was formed on heating 1 with 1 equiv of urethane, H(2)NCOOEt. Compounds 1-6 have been characterized by (1)H and (13)C NMR spectroscopies. The molecular structures of 1, 3, 5, and 6 were determined by single-crystal X-ray diffraction. A theoretical calculation predicted that the cleavage of the C-S double bonds for carbon disulfide with the Ti=N bond of compound 1 was estimated at ca. 21.8 kcal.mol(-1) exothermic.
Databáze: OpenAIRE