Algebraic K -theory and Grothendieck–Witt theory of monoid schemes

Autor: Jens Niklas Eberhardt, Oliver Lorscheid, Matthew B. Young
Přispěvatelé: Dynamical Systems, Geometry & Mathematical Physics
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematische zeitschrift, 301(2), 1407-1445
Mathematische Zeitschrift
ISSN: 0025-5874
DOI: 10.1007/s00209-021-02919-z
Popis: We study the algebraic $$K\!$$ K -theory and Grothendieck–Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $$K\!$$ K -theory space of an integral monoid scheme X in terms of its Picard group $${{\,\mathrm{Pic}\,}}(X)$$ Pic ( X ) and pointed monoid of regular functions $$\Gamma (X, {\mathcal {O}}_X)$$ Γ ( X , O X ) and a complete description of the Grothendieck–Witt space of X in terms of an additional involution on $${{\,\mathrm{Pic}\,}}(X)$$ Pic ( X ) . We also prove space-level projective bundle formulae in both settings.
Databáze: OpenAIRE