Spin fine-structure reveals bi-exciton geometry in an organic semiconductor

Autor: K. M. Yunusova, Thierry Chanelière, John E. Anthony, Alexei D. Chepelianskii, V. Derkach, Leah R. Weiss, Sam L. Bayliss
Přispěvatelé: Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Nanophysique et Semiconducteurs (NPSC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire Aimé Cotton (LAC), Usikov's Institute for Radiophysics and Electronics, University of Kentucky, Cavendish Laboratory, University of Cambridge [UK] (CAM)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2020, 125 (9), pp.097402. ⟨10.1103/PhysRevLett.125.097402⟩
ISSN: 0031-9007
1079-7114
Popis: International audience; In organic semiconductors, bi-exciton states are key intermediates in carrier-multiplication and exciton annihilation. Of particular recent interest is the spin-2 (quintet) bi-exciton. Comprised of two triplet excitons, the bi-exciton can be formed by singlet fission (the formation of two triplet excitons from one singlet state) or by triplet-triplet annihilation (the reverse process). Of interest for photovoltaics and photocatalysis, the wavefunction of these optically dark bi-excitons is difficult to probe and predict. However, the local geometry of the pair-state is imprinted in the fine structure of its spin Hamiltonian. To access the fine structure of the quintet-state we develop and deploy broadband optically detected magnetic resonance (0-9 GHz). Here we correlate the experimentally extracted spin structure with the molecular crystal structure to identify the specific molecular pairings on which the bi-exciton state resides.
Databáze: OpenAIRE