MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27
Autor: | Che-Ming Teng, Sunil Kumar, Hui Chen Pai, Shiow Lin Pan, Jing Ping Liou, Chien Chang Shen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Pyridines
HSP27 Heat-Shock Proteins lcsh:Medicine Cell Cycle Proteins p38 Mitogen-Activated Protein Kinases Histones Mice Tubulin Aurora Kinase B lcsh:Science Heat-Shock Proteins Ovarian Neoplasms Multidisciplinary biology Caspase 3 Imidazoles Cell cycle Cyclin-Dependent Kinases Tubulin Modulators G2 Phase Cell Cycle Checkpoints Gene Expression Regulation Neoplastic Female Research Article Signal Transduction Antineoplastic Agents Cyclin B Protein Serine-Threonine Kinases Tubulin binding Cyclin-dependent kinase Cell Line Tumor Proto-Oncogene Proteins Benzyl Compounds CDC2 Protein Kinase Animals Humans Viability assay Cell Proliferation Cyclin-dependent kinase 1 Cell growth Carcinoma lcsh:R Molecular biology Xenograft Model Antitumor Assays Drug Resistance Neoplasm Cancer cell Cancer research biology.protein lcsh:Q Molecular Chaperones |
Zdroj: | PLoS ONE, Vol 10, Iss 4, p e0123819 (2015) PLoS ONE |
ISSN: | 1932-6203 |
Popis: | Objective In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. Methods To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization was determined using a tubulin binding assay. Results MT-4 (2-Methoxy-5-[2-(3,4,5-trimethoxy-phenyl)-ethyl]-phenol), a derivative of moscatilin, can inhibit both sensitive A2780 and multidrug-resistant NCI-ADR/res cell growth and viability. MT-4 inhibited tubulin polymerization to induce G2/M arrest followed by caspase-mediated apoptosis. Further studies indicated that MT-4 is not a substrate of P-glycoprotein (p-gp). MT-4 also caused G2/M cell cycle arrest, accompanied by the upregulation of cyclin B, p-Thr161 Cdc2/p34, polo-like kinase 1 (PLK1), Aurora kinase B, and phospho-Ser10-histone H3 protein levels. In addition, we found that p38 MAPK pathway activation was involved in MT-4-induced apoptosis. Most importantly, MT-4 also decreased heat shock protein 27 expression and reduced its interaction with caspase-3, which inured cancer cells to chemotherapy resistance. Treatment of cells with SB203580 or overexpression of dominant negative (DN)-p38 or wild-type HSP27 reduced PARP cleavage caused by MT-4. MT-4 induced apoptosis through regulation of p38 and HSP27. Our xenograft models also show the in vivo efficacy of MT-4. MT-4 inhibited both A2780 and NCI-ADR/res cell growth in vitro and in vivo. Conclusion These findings indicate that MT-4 could be a potential lead compound for the treatment of multidrug-resistant ovarian cancer. |
Databáze: | OpenAIRE |
Externí odkaz: |