Surface complexation modeling of zinc sorption onto ferrihydrite
Autor: | Paras Trivedi, Donald L. Sparks, Noel C. Scrivner, James A. Dyer |
---|---|
Rok vydání: | 2004 |
Předmět: |
Activity coefficient
Aqueous solution Chemistry Potentiometric titration Inorganic chemistry Analytical chemistry Sorption engineering.material Triple bond Surfaces Coatings and Films Electronic Optical and Magnetic Materials Biomaterials Hydrous ferric oxides Ferrihydrite Colloid and Surface Chemistry Ionic strength engineering |
Zdroj: | Journal of Colloid and Interface Science. 270:56-65 |
ISSN: | 0021-9797 |
DOI: | 10.1016/s0021-9797(03)00618-0 |
Popis: | A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength dependence of sorption. The results of this research and previous work with Pb(II) indicate that the existing thermodynamic framework for the modified TLM is able to reproduce the metal sorption data only over a limited range of conditions. For this reason, much work still needs to be done in fine-tuning the thermodynamic framework and databases for the TLM. |
Databáze: | OpenAIRE |
Externí odkaz: |