Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy

Autor: I. D. Baikie, Julia L. Payne, Jonathon R. Harwell, Chengsheng Ni, T. K. Baikie, Graham A. Turnbull, John T. S. Irvine, Ifor D. W. Samuel
Přispěvatelé: EPSRC, The Royal Society, University of St Andrews. School of Physics and Astronomy, University of St Andrews. School of Chemistry, University of St Andrews. EaSTCHEM, University of St Andrews. Condensed Matter Physics
Rok vydání: 2016
Předmět:
Zdroj: Physical Chemistry Chemical Physics. 18:19738-19745
ISSN: 1463-9084
1463-9076
DOI: 10.1039/c6cp02446g
Popis: This work was supported by the Engineering and Physical Sciences Research Council (grant codes EP/M506631/1, EP/ K015540/01, EP/K022237/1 and EP/M025330/1). IDWS and JTSI acknowledge Royal Society Wolfson research merit awards. The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials. Publisher PDF
Databáze: OpenAIRE