Q-functions and distributions, operational and umbral methods
Autor: | B. Germano, Giuseppe Dattoli, Silvia Licciardi, M. R. Martinelli |
---|---|
Přispěvatelé: | Dattoli, G., Licciardi, S., Germano, B., Martinelli, M. R. |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
operators theory 44A99
47B99 47A62 umbral methods 05A40 special functions 33C52 33C65 33C99 33B10 33B15 Hermite polynomials 33C45 calculus Tsallis 60E99 Student’s distribution 60E05 q-Bessel functions 05A30 Computer science General Mathematics Gaussian Frame (networking) Umbral methods 05A40 Context (language use) State (functional analysis) Special functions 33C52 33C65 33C99 33B10 33B15 symbols.namesake Special functions Operational calculus QA1-939 Computer Science (miscellaneous) Calculus symbols Operators theory 44A99 47B99 47A62 Student's distribution 60E05 Engineering (miscellaneous) Mathematics Weibull distribution |
Zdroj: | Mathematics; Volume 9; Issue 21; Pages: 2664 Mathematics, Vol 9, Iss 2664, p 2664 (2021) |
Popis: | The use of non-standard calculus means have been proven to be extremely powerful for studying old and new properties of special functions and polynomials. These methods have helped to frame either elementary and special functions within the same logical context. Methods of Umbral and operational calculus have been embedded in a powerful and efficient analytical tool, which will be applied to the study of the properties of distributions such as Tsallis, Weibull and Student’s. We state that they can be viewed as standard Gaussian distributions and we take advantage of the relevant properties to infer those of the aforementioned distributions. |
Databáze: | OpenAIRE |
Externí odkaz: |