Numerical model and parametric analysis of a liquid based hybrid photovoltaic thermal (PVT) collector
Autor: | Monica Siroux, Madalina Barbu, George Darie |
---|---|
Přispěvatelé: | Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Renewable energy
PVT Materials science business.industry Photovoltaic system Mechanical engineering Wind speed TK1-9971 Cogeneration [SPI.GCIV]Engineering Sciences [physics]/Civil Engineering General Energy Solar energy Thermal Heat exchanger Heat transfer Working fluid Electricity Electrical engineering. Electronics. Nuclear engineering Micro-cogeneration business Electrical efficiency Dynamic simulation |
Zdroj: | Energy Reports, Vol 7, Iss, Pp 7977-7988 (2021) Energy Reports Energy Reports, 2021, 7, pp.7977-7988. ⟨10.1016/j.egyr.2021.07.058⟩ |
ISSN: | 2352-4847 |
DOI: | 10.1016/j.egyr.2021.07.058⟩ |
Popis: | A hybrid photovoltaic thermal (PVT) panel is a module in which the photovoltaic (PV) layer is not only producing electricity, but also operates as a thermal absorber. As a result, thermal and electrical energy are being produced simultaneously, operating as a micro-cogeneration equipment. As in any cogeneration system, there is tight link between the electrical and thermal performance and it is dependent on multiple parameters: climate conditions, thermo-physical, geometrical and electrical properties. This paper investigates the effect of the variation of several of these parameters on the electrical and thermal performance, as well as on the global output. In order to achieve this, a dynamic numerical model is proposed, which simulates the heat exchange between the layers of the PVT panel. The model was applied to two different climatic conditions: Bucharest, Romania and Strasbourg, France, in order to assess and compare their behavior and performance. The simulation computes the temperature of each layer at any particular time, and a slightly higher outlet temperature of the working fluid can be observed in Bucharest during the summer, and in Strasbourg during the winter. The model is validated against data from the literature and can be applied to any climatic conditions and adapted for multiple geometrical and thermo-physical configuration. Next, a one-factor-at-a-time parametric analysis is carried out in order to assess the impact of various parameters on the electrical, thermal and global efficiency. The results showed in most cases a compromise between the electrical and thermal performance: in terms of wind speed and insulation, the thermal benefits of low wind and high insulation overcome the decrease in electrical efficiency. The packing factor was found to be optimum when maximized, as the electrical benefits are more significant than the thermal loss. The width of the channels in the heat exchanger should also be maximized as far as technologically possible for best performance. |
Databáze: | OpenAIRE |
Externí odkaz: |