Elementary equivalence versus isomorphism, II
Autor: | Florian Pop |
---|---|
Rok vydání: | 2017 |
Předmět: |
Milnor $K$-groups
Pure mathematics 12G10 Dimension (graph theory) Type (model theory) 01 natural sciences symbols.namesake Kronecker delta 0103 physical sciences 03C62 first-order definability 0101 mathematics Global field Function field Mathematics 13F30 12F20 Algebra and Number Theory Conjecture elementary equivalence versus isomorphism Galois étale cohomology 11G30 14H25 11G99 010102 general mathematics Elementary equivalence Kato's higher local-global principles finitely generated fields symbols 010307 mathematical physics Isomorphism 12L12 |
Zdroj: | Algebra Number Theory 11, no. 9 (2017), 2091-2111 |
ISSN: | 1944-7833 1937-0652 |
DOI: | 10.2140/ant.2017.11.2091 |
Popis: | In this note we give sentences φK in the language of fields which describe the isomorphy type of K among finitely generated fields, provided the Kronecker dimension of K is ≤ 2, or equivaelntly, K is the function field of a curve over a global field, thus extending the corresponding results by Rumely concerning global fields. This closes the gap from Scanlon’s [Sc] approach to proving what he calls Pop’s Conjecture for K as above. |
Databáze: | OpenAIRE |
Externí odkaz: |