Nondeterminism and An Abstract Formulation of Nečiporuk’s Lower Bound Method

Autor: Nathan Grosshans, Pierre McKenzie, Luc Segoufin, Paul Beame
Přispěvatelé: University of Washington [Seattle], École normale supérieure - Cachan (ENS Cachan), Université de Montréal (UdeM), Verification in databases (DAHU), Laboratoire Spécification et Vérification [Cachan] (LSV), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), NSF grants CCF-1217099 and CCF-1524246., Grants from Digiteo France., NSERC of Canada., 'Chaire DIGITEO, ENS Cachan - École Polytechnique'.
Rok vydání: 2016
Předmět:
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC]
Discrete mathematics
Branching programs
Sublinear function
Computation
1. No poverty
binary formulas
0102 computer and information sciences
02 engineering and technology
01 natural sciences
Upper and lower bounds
Theoretical Computer Science
Nondeterministic algorithm
Computer Science - Computational Complexity
Computational Theory and Mathematics
010201 computation theory & mathematics
0202 electrical engineering
electronic engineering
information engineering

ACM: F.: Theory of Computation/F.1: COMPUTATION BY ABSTRACT DEVICES/F.1.1: Models of Computation/F.1.1.5: Unbounded-action devices (e.g.
cellular automata
circuits
networks of machines)

limited nondeterminism
020201 artificial intelligence & image processing
Parity (mathematics)
Mathematics
Zdroj: ACM Transactions on Computation Theory
ACM Transactions on Computation Theory, ACM, 2016, 9 (1), pp.1-34. ⟨10.1145/3013516⟩
ACM Transactions on Computation Theory, 2016, 9 (1), pp.1-34. ⟨10.1145/3013516⟩
ISSN: 1942-3462
1942-3454
DOI: 10.1145/3013516
Popis: A formulation of Nečiporuk’s lower bound method slightly more inclusive than the usual complexity-measure-specific formulation is presented. Using this general formulation, limitations to lower bounds achievable by the method are obtained for several computation models, such as branching programs and Boolean formulas having access to a sublinear number of nondeterministic bits. In particular, it is shown that any lower bound achievable by the method of Nečiporuk for the size of nondeterministic and parity branching programs is at most O ( n 3/2 /log n ).
Databáze: OpenAIRE