Computational prediction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient‐specific ascending thoracic aortas
Autor: | Pierre Croisille, Stéphane Avril, R. Jayendiran, Magalie Viallon, Salvatore Campisi, Francesca Condemi |
---|---|
Přispěvatelé: | RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
medicine.medical_specialty
0206 medical engineering Biomedical Engineering Hemodynamics Aorta Thoracic 02 engineering and technology 030204 cardiovascular system & hematology [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] 03 medical and health sciences Mechanobiology 0302 clinical medicine Aneurysm [SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular system Internal medicine Shear stress medicine Humans In patient Molecular Biology ComputingMilieux_MISCELLANEOUS Body surface area Aortic Aneurysm Thoracic business.industry Applied Mathematics [INFO.INFO-CE]Computer Science [cs]/Computational Engineering Finance and Science [cs.CE] Healthy subjects [SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph] Blood flow medicine.disease 020601 biomedical engineering Computational Theory and Mathematics Modeling and Simulation Cardiology Hydrodynamics Stress Mechanical business Shear Strength Software |
Zdroj: | International Journal for Numerical Methods in Biomedical Engineering International Journal for Numerical Methods in Biomedical Engineering, John Wiley and Sons, 2020, 36 (6), ⟨10.1002/cnm.3326⟩ |
ISSN: | 2040-7939 2040-7947 |
DOI: | 10.1002/cnm.3326⟩ |
Popis: | The aim of the present work is to propose a robust computational framework combining computational fluid dynamics (CFD) and 4D flow MRI to predict the progressive changes in hemodynamics and wall rupture index (RPI) induced by aortic morphological evolutions in patients harboring ascending thoracic aortic aneurysms (ATAAs). An analytical equation has been proposed to predict the aneurysm progression based on age, sex, and body surface area. Parameters such as helicity, wall shear stress (WSS), time-averaged WSS, oscillatory shear index, relative residence time, and viscosity were evaluated for two patients at different stages of aneurysm growth, and compared with age-sex-matched healthy subjects. The study shows that evolution of hemodynamics and RPI, despite being very slow in ATAAs, is strongly affected by morphological alterations and, in turn could impact biomechanical factors and aortic mechanobiology. An aspect of the current work is that the patient-specific 4D MRI data sets were obtained with a follow-up of 1 year and the measured time-averaged velocity maps and flow eccentricity were compared with the CFD simulation for validation. The computational framework presented here is capable of capturing the blood flow patterns and the hemodynamic descriptors during the various stages of aneurysm growth. Further investigations will be conducted in order to verify these results on a larger cohort of patients and with long follow-up times to finally elucidate the link between deranged hemodynamics, AA geometry, and wall mechanical properties in ATAAs. |
Databáze: | OpenAIRE |
Externí odkaz: |