On the Rate of Convergence of P-Iteration, SP-Iteration, and D-Iteration Methods for Continuous Nondecreasing Functions on Closed Intervals
Autor: | Anchalee Khemphet, Jukkrit Daengsaen |
---|---|
Rok vydání: | 2018 |
Předmět: |
Work (thermodynamics)
Article Subject Iterative method lcsh:Mathematics Applied Mathematics 010102 general mathematics 010103 numerical & computational mathematics Fixed point lcsh:QA1-939 01 natural sciences Rate of convergence Convergence (routing) Applied mathematics 0101 mathematics Analysis Mathematics |
Zdroj: | Abstract and Applied Analysis, Vol 2018 (2018) Abstr. Appl. Anal. |
ISSN: | 1687-0409 1085-3375 |
Popis: | We introduce a new iterative method called D-iteration to approximate a fixed point of continuous nondecreasing functions on arbitrary closed intervals. The purpose is to improve the rate of convergence compared to previous work. Specifically, our main result shows that D-iteration converges faster than P-iteration and SP-iteration to the fixed point. Consequently, we have that D-iteration converges faster than the others under the same computational cost. Moreover, the analogue of their convergence theorem holds for D-iteration. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |