On Irrelevant Literals in Pseudo-Boolean Constraint Learning

Autor: Daniel Le Berre, Pierre Marquis, Romain Wallon, Stefan Mengel
Přispěvatelé: Centre de Recherche en Informatique de Lens (CRIL), Université d'Artois (UA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université d'Artois (UA), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 29th International Joint Conference on Artificial Intelligence (IJCAI'20)
29th International Joint Conference on Artificial Intelligence (IJCAI'20), Jan 2021, Yokohama (en ligne), Japan. pp.1148-1154, ⟨10.24963/ijcai.2020/160⟩
HAL
DOI: 10.24963/ijcai.2020/160⟩
Popis: Learning pseudo-Boolean (PB) constraints in PB solvers exploiting cutting planes based inference is not as well understood as clause learning in conflict-driven clause learning solvers. In this paper, we show that PB constraints derived using cutting planes may contain \emph{irrelevant literals}, i.e., literals whose assigned values (whatever they are) never change the truth value of the constraint. Such literals may lead to infer constraints that are weaker than they should be, impacting the size of the proof built by the solver, and thus also affecting its performance. This suggests that current implementations of PB solvers based on cutting planes should be reconsidered to prevent the generation of irrelevant literals. Indeed, detecting and removing irrelevant literals is too expensive in practice to be considered as an option (the associated problem is NP-hard.
Comment: published at IJCAI 2020
Databáze: OpenAIRE