Networked cooperation-based distributed model predictive control using Laguerre functions for large-scale systems
Autor: | Boumedyen Boussaid, Kamel Menighed, Ahmed Chemori, Joseph J. Yame |
---|---|
Přispěvatelé: | Université 20 Août 1955 Skikda, Conception et commande de robots pour la manipulation (DEXTER), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Ecole Nationale d'Ingénieurs de Gabès, Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0209 industrial biotechnology
Mathematical optimization Scale (ratio) Computer science Large-scale interconnected systems Control (management) 02 engineering and technology Telecommunications network [SPI.AUTO]Engineering Sciences [physics]/Automatic Model predictive control 020901 industrial engineering & automation 020401 chemical engineering Distributed model predictive control Trajectory Laguerre polynomials Orthonormal basis 0204 chemical engineering Distributed control system Laguerre functions |
Zdroj: | 4th International Conference On Electrical Engineering and Control Applications, ICEECA 2019 4th International Conference On Electrical Engineering and Control Applications, ICEECA 2019, Dec 2019, Constantine, Algeria Lecture Notes in Electrical Engineering ISBN: 9789811564024 HAL |
Popis: | Published in \textit{Proceedings of the 4th International Conference on Electrical Engineering and Control Applications, ICEECA 2019}, Sofiane Bououden, Mohammed Chadli, Salim Ziani, Ivan Zelinka (Eds.), Lecture Notes in Electrical Engineering, vol 682, pp. 123-138, Springer 2021.; International audience; This paper proposes a novel cooperative distributed control system architecture based on unsupervised and independent Model Predictive Control (MPC) using discrete-time Laguerre functions to improve the performance of the whole system. In this distributed framework, local MPCs algorithms might exchange and require information from other sub-controllers via the communication network to achieve their task in a cooperative way. In order to reduce the computational burden in the local rolling optimization with a sufficiently large prediction horizon, the orthonormal Laguerre functions are used to approximate the predicted control trajectory. Simulation results show that the proposed architecture could guarantee satisfactory global performance even under strong interactions among the subsystems. |
Databáze: | OpenAIRE |
Externí odkaz: |