Minimality for actions of abelian semigroups on compact spaces with a free interval
Autor: | Roman Hric, Vladimír Špitalský, L'ubomír Snoha, Peter Maličký, Matúš Dirbák |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Semigroup Applied Mathematics General Mathematics 010102 general mathematics Hausdorff space Dynamical Systems (math.DS) 01 natural sciences Free interval 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Abelian group Mathematics - Dynamical Systems Trichotomy (mathematics) Mathematics 37B05 (Primary) 54H20 (Secondary) |
Popis: | We study minimality for continuous actions of abelian semigroups on compact Hausdorff spaces with a free interval. First, we give a necessary and sufficient condition for such a space to admit a minimal action of a given abelian semigroup. Further, for actions of abelian semigroups we provide a trichotomy for the topological structure of minimal sets intersecting a free interval. |
Databáze: | OpenAIRE |
Externí odkaz: |