Enumeration of minimal connected dominating sets for chordal graphs

Autor: Reza Saei, Pinar Heggernes, Dieter Kratsch, Petr A. Golovach
Přispěvatelé: Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Discrete Applied Mathematics
Discrete Applied Mathematics, Elsevier, 2020, 278, pp.3-11. ⟨10.1016/j.dam.2019.07.015⟩
ISSN: 0166-218X
DOI: 10.1016/j.dam.2019.07.015⟩
Popis: Enumerating objects of specified type is one of the principal tasks in algorithms. In graph algorithms an often studied task is the enumeration of vertex subsets of the input graph satisfying a certain property. We study the enumeration of all minimal connected dominating sets of an input chordal graph. We establish an enumeration algorithm running in time O ( 1 . 473 6 n ) improving upon a previous O ( 1 . 715 9 n ) algorithm (Golovach et al., 2016) . This is used to show that every n -vertex chordal graph has at most 1 . 473 6 n minimal connected dominating sets.
Databáze: OpenAIRE