Intrinsic Hardy–Orlicz spaces of conformal mappings
Autor: | Pekka Koskela, Sita Benedict |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Image domain
Pure mathematics Mathematics::Functional Analysis Mathematics - Complex Variables mathematics General Mathematics ta111 Mathematics::Classical Analysis and ODEs conforma mappings Conformal map Function (mathematics) Type (model theory) Space (mathematics) Path distance Unit disk Hardy–Orlicz spaces FOS: Mathematics Complex Variables (math.CV) 30C35 (Primary) 30H10 (Secondary) Value (mathematics) Mathematics |
Zdroj: | Bulletin of the London Mathematical Society. 47(1):75-84 |
ISSN: | 0024-6093 |
DOI: | 10.1112/blms/bdu097 |
Popis: | We define a new type of Hardy-Orlicz spaces of conformal mappings on the unit disk where in place of the value |f(x)| we consider the intrinsic path distance between f(x) and f(0) in the image domain. We show that if the Orlicz function is doubling then these two spaces are actually the same, and we give an example when the intrinsic Hardy-Orlicz space is strictly smaller. 10 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |